Some notes on the OpenID Connect (OIDC) 'redirect uri'

March 15, 2025

The normal authentication process for OIDC is web-based and involves a series of HTTP redirects, interspersed with web pages that you interact with. Something that wants to authenticate you will redirect you to the OIDC identity server's website, which will ask you for your login and password and maybe MFA authentication, check them, and then HTTP redirect you back to a 'callback' or 'redirect' URL that will transfer a magic code from the OIDC server to the OIDC client (generally as a URL query parameter). All of this happens in your browser, which means that the OIDC client and server don't need to be able to directly talk to each other, allowing you to use an external cloud/SaaS OIDC IdP to authenticate to a high-security internal website that isn't reachable from the outside world and maybe isn't allowed to make random outgoing HTTP connections.

(The magic code transferred in the final HTTP redirect is apparently often not the authentication token itself but instead something the client can use for a short time to obtain the real authentication token. This does require the client to be able to make an outgoing HTTP connection, which is usually okay.)

When the OIDC client initiates the HTTP redirection to the OIDC IdP server, one of the parameters it passes along is the 'redirect uri' it wants the OIDC server to use to pass the magic code back to it. A malicious client (or something that's gotten a client's ID and secret) could do some mischief by manipulating this redirect URL, so the standard specifically requires that OIDC IdP have a list of allowed redirect uris for each registered client. The standard also says that in theory, the client's provided redirect uri and the configured redirect uris are compared as literal string values. So, for example, 'https://example.org/callback' doesn't match 'https://example.org/callback/'.

This is straightforward when it comes to websites as OIDC clients, since they should have well defined callback urls that you can configure directly into your OIDC IdP when you set up each of them. It gets more hairy when what you're dealing with is programs as OIDC clients, where they are (for example) trying to get an OIDC token so they can authenticate to your IMAP server with OAuth2, since these programs don't normally have a website. Historically, there are several approaches that people have taken for programs (or seem to have, based on my reading so far).

Very early on in OAuth2's history, people apparently defined the special redirect uri value 'urn:ietf:wg:oauth:2.0:oob' (which is now hard to find or identify documentation on). An OAuth2 IdP that saw this redirect uri (and maybe had it allowed for the client) was supposed to not redirect you but instead show you a HTML page with the magic OIDC code displayed on it, so you could copy and paste the code into your local program. This value is now obsolete but it may still be accepted by some IdPs (you can find it listed for Google in mutt_oauth2.py, and I spotted an OIDC IdP server that handles it).

Another option is that the IdP can provide an actual website that does the same thing; if you get HTTP redirected to it with a valid code, it will show you the code on a HTML page and you can copy and paste it. Based on mutt_oauth2.py again, it appears that Microsoft may have at one point done this, using https://login.microsoftonline.com/common/oauth2/nativeclient as the page. You can do this too with your own IdP (or your own website in general), although it's not recommended for all sorts of reasons.

The final broad approach is to use 'localhost' as the target host for the redirect. There are several ways to make this work, and one of them runs into complications with the IdP's redirect uri handling.

The obvious general approach is for your program to run a little HTTP server that listens on some port on localhost, and capture the code when the (local) browser gets the HTTP redirect to localhost and visits the server. The problem here is that you can't necessarily listen on port 80, so your redirect uri needs to include the port you're listening (eg 'http://localhost:7000'), and if your OIDC IdP is following the standard it must be configured not just with 'http://localhost' as the allowed redirect uri but the specific port you'll use. Also, because of string matching, if the OIDC IdP lists 'http://localhost:7000', you can't send 'http://localhost:7000/' despite them being the same URL.

(And your program has to use 'localhost', not '127.0.0.1' or the IPv6 loopback address; although the two have the same effect, they're obviously not string-identical.)

Based on experimental evidence from OIDC/OAuth2 client configurations, I strongly suspect that some large IdP providers have non-standard, relaxed handling of 'localhost' redirect uris such that their client configuration lists 'http://localhost' and the IdP will accept some random port glued on in the actual redirect uri (or maybe this behavior has been standardized now). I suspect that the IdPs may also accept the trailing slash case. Honestly, it's hard to see how you get out of this if you want to handle real client programs out in the wild.

(Some OIDC IdP software definitely does the standard compliant string comparison. The one I know of for sure is SimpleSAMLphp's OIDC module. Meanwhile, based on reading the source code, Dex uses a relaxed matching for localhost in its matching function, provided that there are no redirect uris register for the client. Dex also still accepts the urn:ietf:wg:oauth:2.0:oob redirect uri, so I suspect that there are still uses out there in the field.)

If the program has its own embedded web browser that it's in full control of, it can do what Thunderbird appears to do (based on reading its source code). As far as I can tell, Thunderbird doesn't run a local listening server; instead it intercepts the HTTP redirection to 'http://localhost' itself. When the IdP sends the final HTTP redirect to localhost with the code embedded in the URL, Thunderbird effectively just grabs the code from the redirect URL in the HTTP reply and never actually issues a HTTP request to the redirect target.

The final option is to not run a localhost HTTP server and to tell people running your program that when their browser gives them an 'unable to connect' error at the end of the OIDC authentication process, they need to go to the URL bar and copy the 'code' query parameter into the program (or if you're being friendly, let them copy and paste the entire URL and you extract the code parameter). This allows your program to use a fixed redirect uri, including just 'http://localhost', because it doesn't have to be able to listen on it or on any fixed port.

(This is effectively a more secure but less user friendly version of the old 'copy a code that the website displayed' OAuth2 approach, and that approach wasn't all that user friendly to start with.)

PS: An OIDC redirect uri apparently allows things other than http:// and https:// URLs; there is, for example, the 'openid-credential-offer' scheme. I believe that the OIDC IdP doesn't particularly do anything with those redirect uris other than accept them and issue a HTTP redirect to them with the appropriate code attached. It's up to your local program or system to intercept HTTP requests for those schemes and react appropriately, much like Thunderbird does, but perhaps easier because you can probably register the program as handling all 'whatever-special://' URLs so the redirect is automatically handed off to it.

(I suspect that there are more complexities in the whole OIDC and OAuth2 redirect uri area, since I'm new to the whole thing.)

Written on 15 March 2025.
« Some notes on configuring Dovecot to authenticate via OIDC/OAuth2
OIDC claim scopes and their interactions with OIDC token authentication »

Page tools: View Source.
Search:
Login: Password:

Last modified: Sat Mar 15 22:57:35 2025
This dinky wiki is brought to you by the Insane Hackers Guild, Python sub-branch.